The Science

99.9% pure Copper works constantly to kill bacteria, viruses, and fungi. Copper reduces bacterial, viral, and fungal loads within minutes and surfaces become sterile in hours.

Copper surfaces are more effective for reducing microbial load than other commercial metal, plastic, and wood surface finishes. 5,8,10,111,12,19,20,22,24,25,26,27,28,29,33,34,35,38,39

Surface sterilisation has a critical role in breaking the chain of transmission of bacterial and viral pathogens, particularly in ‘HIGH-TOUCH’ surface environments. 1,2,9

Copper is nature’s most effective commercially available antibacterial and antiviral surface.

Bacteria and viruses can be acquired from environmental surfaces either directly from surface-to-finger-to-mouth or directly from surface-to-mouth.2

The majority of bacteria and viruses stay viable on metal, stainless steel, plastic, wood, and melamine surfaces for days to weeks to months, despite standardised cleaning methods. 1,5,6,13,14,15,16,17,18,19,20,22,24,25,26,27,28,33,35,36,38,39

Copper has an effective role in multiple home, work, and community applications. Antimicrobial copper (Group 1 EPA Reg. No. 82012-1) has been approved in the USA for “use in hospitals, other healthcare facilities, and various public, commercial and residential buildings.” 8 NO ruling for such has been made by Australian authorities to date.

Healthcare acquired infections (HAI’s) account for between 5-10% of hospital admissions at an enormous social cost and economic burden. Any reduction in overall infection rates has a significant public health benefit. 3,4,5

Using Copper on ‘HIGH-TOUCH’ hospital surfaces every day has been shown to reduce microbial burden by 83% in the Intensive Care Unit (ICU) clinical setting and overall hospital patient infection rates by 58%. 5,33,34,35,39

Copper Shield provides a readily applicable environment control device solution by placing 99.9% pure Copper into the home, work, hospital, and community environments, likely, reducing the transmission of multiple common and current bacteria, viruses, and fungi. 5,8,10,111,12,19,20,22,24,25,26,27,28,29,33,34,35,37,38,39

Copper Shield restores a measure of confidence to the individual when having to grab a handle, push a door or ‘engage’ a surface that others have been in contact with.

Copper surfaces DO NOT replace the requirement for proper hand hygiene and cleaning agents.7,8,9,30

The longer Copper Shield has been ‘untouched’ the more sterile it becomes.

References

  1. Gebel, Jürgen et al. “The role of surface disinfection in infection prevention.” GMS hygiene and infection control vol. 8,1 Doc10. 29 Apr. 2013, doi:10.3205/dgkh000210

  2. Rutala, William A, and David J Weber. “The benefits of surface disinfection.” American journal of infection control vol. 32,4 (2004): 226-31. doi:10.1016/j.ajic.2004.04.197

  3. Wenzel, R P, and M B Edmond. “The impact of hospital-acquired bloodstream infections.” Emerging infectious diseases vol. 7,2 (2001): 174-7. doi:10.3201/eid0702.010203

  4. Centre for Disease Control and Prevention - Healthcare Associated Infections. https://www.cdc.gov/hai/data/portal/index.html

  5. Arendsen, Linda P et al. “The Use of Copper as an Antimicrobial Agent in Health Care, Including Obstetrics and Gynecology.” Clinical microbiology reviews vol. 32,4 e00125-18. 14 Aug. 2019, doi:10.1128/CMR.00125-18

  6. Fatoba, O.S. et al. (2014) The Study of the Antimicrobial Properties of Selected Engineering Materials’ Surfaces. Journal of Minerals and Materials Characterization and Engineering, 2, 78-87. http://dx.doi.org/10.4236/jmmce.2014.22012

  7. Centre for Disease Control and Prevention Household cleaning https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cleaning-disinfection.html

  8. United States Environmental Protection Agency (EPA) https://www3.epa.gov/pesticides/chem_search/ppls/082012-00001-20140826.pdf

  9. Weber, David J et al. “The role of the surface environment in healthcare-associated infections.” Current opinion in infectious diseases vol. 26,4 (2013): 338-44. doi:10.1097/QCO.0b013e3283630f04

  10. Antimicrobial copper alloy touch surfaces. https://en.wikipedia.org/wiki/Antimicrobial_copper-alloy_touch_surfaces

  11. Huang, Lu et al. “Antimicrobial behavior of Cu-bearing Zr-based bulk metallic glasses.” Materials science & engineering. C, Materials for biological applications vol. 39 (2014): 325-9. doi:10.1016/j.msec.2014.03.017

  12. Villapún, Victor M et al. “Antibacterial Metallic Touch Surfaces.” Materials (Basel, Switzerland) vol. 9,9 736. 29 Aug. 2016, doi:10.3390/ma9090736

  13. Kramer, Axel et al. “How long do nosocomial pathogens persist on inanimate surfaces? A systematic review.” BMC infectious diseases vol. 6 130. 16 Aug. 2006, doi:10.1186/1471-2334-6-130

  14. Alidjinou, Enagnon Kazali et al. “Resistance of Enteric Viruses on Fomites.” Intervirology vol. 61,5 (2018): 205-213. doi:10.1159/000448807

  15. Abad, F X et al. “Survival of enteric viruses on environmental fomites.” Applied and environmental microbiology vol. 60,10 (1994): 3704-10.

  16. Barker, J et al. “Effects of cleaning and disinfection in reducing the spread of Norovirus contamination via environmental surfaces.” The Journal of hospital infection vol. 58,1 (2004): 42-9. doi:10.1016/j.jhin.2004.04.021

  17. Coronavirus can survive long exposure to high temperature, a threat to lab staff around world: paper. https://www.scmp.com/news/china/science/article/3079831/coronavirus-can-survive-long-exposure-high-temperature-threat

  18. Kampf, G et al. “Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents.” The Journal of hospital infection vol. 104,3 (2020): 246-251. doi:10.1016/j.jhin.2020.01.022

  19. van Doremalen, Neeltje et al. “Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1.” The New England journal of medicine vol. 382,16 (2020): 1564-1567. doi:10.1056/NEJMc2004973

  20. van Doremalen, N et al. “Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions.” Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin vol. 18,38 20590. 19 Sep. 2013, doi:10.2807/1560-7917.es2013.18.38.20590

  21. Carling, Philip C et al. “Improving cleaning of the environment surrounding patients in 36 acute care hospitals.” Infection control and hospital epidemiology vol. 29,11 (2008): 1035-41. doi:10.1086/591940

  22. Schmidt, Michael G et al. “Self-Disinfecting Copper Beds Sustain Terminal Cleaning and Disinfection Effects throughout Patient Care.” Applied and environmental microbiology vol. 86,1 e01886-19. 13 Dec. 2019, doi:10.1128/AEM.01886-19

  23. Anderson, Deverick J et al. “Enhanced terminal room disinfection and acquisition and infection caused by multidrug-resistant organisms and Clostridium difficile (the Benefits of Enhanced Terminal Room Disinfection study): a cluster-randomised, multicentre, crossover study.” Lancet (London, England) vol. 389,10071 (2017): 805-814. doi:10.1016/S0140-6736(16)31588-4

  24. Noyce, J O et al. “Inactivation of influenza A virus on copper versus stainless steel surfaces.” Applied and environmental microbiology vol. 73,8 (2007): 2748-50. doi:10.1128/AEM.01139-06

  25. Wilks, S A et al. “The survival of Escherichia coli O157 on a range of metal surfaces.” International journal of food microbiology vol. 105,3 (2005): 445-54. doi:10.1016/j.ijfoodmicro.2005.04.021

  26. Noyce, J O et al. “Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment.” The Journal of hospital infection vol. 63,3 (2006): 289-97. doi:10.1016/j.jhin.2005.12.008

  27. Warnes, S L, and C W Keevil. “Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact.” Applied and environmental microbiology vol. 77,17 (2011): 6049-59. doi:10.1128/AEM.00597-11

  28. Souli, Maria et al. “Antimicrobial activity of copper surfaces against carbapenemase-producing contemporary Gram-negative clinical isolates.” The Journal of antimicrobial chemotherapy vol. 68,4 (2013): 852-7. doi:10.1093/jac/dks473

  29. Zhu, Libin et al. “Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica.” Food microbiology vol. 30,1 (2012): 303-10. doi:10.1016/j.fm.2011.12.001

  30. Sax, Hugo et al. “The World Health Organization hand hygiene observation method.” American journal of infection control vol. 37,10 (2009): 827-34. doi:10.1016/j.ajic.2009.07.003

  31. Huang, Susan S et al. “Risk of acquiring antibiotic-resistant bacteria from prior room occupants.” Archives of internal medicine vol. 166,18 (2006): 1945-51. doi:10.1001/archinte.166.18.1945

  32. Bucior, Helen, and Joan Cochrane. “Lifting the Lid: A Clinical Audit on Commode Cleaning.” Journal of Infection Prevention, vol. 11, no. 3, May 2010, pp. 73–80, doi:10.1177/1757177410365945.

  33. Salgado, Cassandra D et al. “Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit.” Infection control and hospital epidemiology vol. 34,5 (2013): 479-86. doi:10.1086/670207

  34. Rai, Seema et al. “Evaluation of the antimicrobial properties of copper surfaces in an outpatient infectious disease practice.” Infection control and hospital epidemiology vol. 33,2 (2012): 200-1. doi:10.1086/663701

  35. Schmidt, Michael G et al. “Sustained reduction of microbial burden on common hospital surfaces through introduction of copper.” Journal of clinical microbiology vol. 50,7 (2012): 2217-23. doi:10.1128/JCM.01032-12

  36. Kampf, G et al. “Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents.” The Journal of hospital infection vol. 104,3 (2020): 246-251. doi:10.1016/j.jhin.2020.01.022

  37. History of copper and civilisation. https://www.copper.org/education/history/timeline/timeline.html

  38. Wheeldon, L J et al. “Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory.” The Journal of antimicrobial chemotherapy vol. 62,3 (2008): 522-5. doi:10.1093/jac/dkn219

  39. Michels, Harold T et al. “From Laboratory Research to a Clinical Trial: Copper Alloy Surfaces Kill Bacteria and Reduce Hospital-Acquired Infections.” HERD vol. 9,1 (2015): 64-79. doi:10.1177/1937586715592650